Raster image processing
Each horizontal strip of dots across the page is known as a raster line or scan line. Creating the image to be printed is done by a Raster Image Processor (RIP), typically built into the laser printer. The source material may be encoded in any number of special page description languages such as Adobe PostScript (PS), HP Printer Command Language (PCL), or Microsoft XML Page Specification (XPS), as well as unformatted text-only data. The RIP uses the page description language to generate a bitmap of the final page in the raster memory.For fully graphical output using a page description language, a minimum of 1 megabyte of memory is needed to store an entire monochrome letter/A4 sized page of dots at 300 dpi. At 300 dpi, there are 90,000 dots per square inch (300 dots per linear inch). A typical 8.5 x 11 sheet of paper has 0.25-inch (6.4 mm) margins, reducing the printable area to 8.0 x 10.5 inches (270 mm), or 84 square inches. 84 sq/in x 90,000 dots per sq/in = 7,560,000 dots. Meanwhile 1 megabyte = 1,048,576 bytes, or 8,388,608 bits, which is just large enough to hold the entire page at 300 dpi, leaving about 100 kilobytes to spare for use by the raster image processor.
In a color printer, each of the four CYMK toner layers is stored as a separate bitmap, and all four layers are typically preprocessed before printing begins, so a minimum of 4 megabytes is needed for a full-color letter-size page at 300 dpi.
Memory requirements increase with the square of the dpi, so 600 dpi requires a minimum of 4 megabytes for monochrome, and 16 megabytes for colour at 600 dpi. Printers capable of tabloid and larger size may include memory expansion slots.
Charging
An AC bias is applied to the primary charge roller to remove any residual charges left by previous images. The roller will also apply a DC bias on the drum surface to ensure a uniform negative potential.
Numerous patents[specify] describe the photosensitive drum coating as a silicon sandwich with a photocharging layer, a charge leakage barrier layer, as well as a surface layer. One version[specify] uses amorphous silicon containing hydrogen as the light receiving layer, Boron nitride as a charge leakage barrier layer, as well as a surface layer of doped silicon, notably silicon with oxygen or nitrogen which at sufficient concentration resembles machining silicon nitride
Exposing
Some non-laser printers expose by an array of light emitting diodes spanning the width of the page, rather than by a laser.
Developing
The surface with the latent image is exposed to toner, fine particles of dry plastic powder mixed with carbon black or colouring agents. The charged toner particles are given a negative charge, and are electrostatically attracted to the photoreceptor's latent image, the areas touched by the laser. Because like charges repel, the negatively charged toner will not touch the drum where the negative charge remains.Transferring
The photoreceptor is pressed or rolled over paper, transferring the image. Higher-end machines use a positively charged transfer roller on the back side of the paper to pull the toner from the photoreceptor to the paper.Fusing
Melting toner onto paper using heat and pressure.
One roller is usually a hollow tube (heat roller) and the other is a rubber backing roller (pressure roller). A radiant heat lamp is suspended in the center of the hollow tube, and its infrared energy uniformly heats the roller from the inside. For proper bonding of the toner, the fuser roller must be uniformly hot.
Some printers use a very thin flexible metal fuser roller, so there is less mass to be heated and the fuser can more quickly reach operating temperature. If paper moves through the fuser more slowly, there is more roller contact time for the toner to melt, and the fuser can operate at a lower temperature. Smaller, inexpensive laser printers typically print slowly, due to this energy-saving design, compared to large high speed printers where paper moves more rapidly through a high-temperature fuser with a very short contact time
Cleaning
Toner may occasionally be left on the photoreceptor when unexpected events such as a paper jam occur. The toner is on the photoconductor ready to apply, but the operation failed before it could be applied. The toner must be wiped off and the process restarted.
Source:- http://en.wikipedia.org
1 comments:
Nice post with great details. Can i print Plastic cards by any laser printer?
Post a Comment